COMBINED ANNUAL EXPLORATION REPORT

CR111

EL 24984, EL 25176, EL25195, EL 25297

FOR PERIOD ENDING 8TH November 2008

LITCHFIELD PROJECT NT

Cape Scott SD5207 1:250,000
Darwin SD5204 1:250,000
Pine Creek SD5208 1:250,000
Port Keats SD5211 1:250,000
Fergusson River SD5212 1:250,000
Anson SD4971 1:100,000
Bynoe SD5072 1:100,000
Daly River SD5070 1:100,000
Greenwood SD4970 1:100,000
Moyle SD4969 1:100,000
Reynolds River SD5071 1:100,000
Wingate MountainsSD5069 1:100,000

Titleholder: Territory Uranium Company Limited

Report No. 2008-010
Prepared for Territory Uranium Ltd
By A Chapman
Territory Uranium Co Ltd
5 December 2008
CONTENTS

CONTENTS ... 2
List of Figures .. 2
List of Appendices ... 2
1. SUMMARY .. 1
2. LOCATION AND ACCESS .. 1
3. TENEMENT STATUS AND OWNERSHIP ... 2
4. GEOLOGY ... 4
5. PREVIOUS EXPLORATION .. 8
 5.1 Exploration by Other Companies ... 8
 5.2 Exploration by Territory Uranium .. 8
6. EXPLORATION DURING YEAR 2 .. 10
7. PLANNED EXPLORATION FOR YEAR 3 ... 11
8. REFERENCES ... 12

List of Figures

Figure 1: CR111 Location Map .. 3
Figure 2: Geology of CR111 NT 2500K map ... 5
Figure 3: Areas flown with VTEM in 2008 over NT 2500k Geology 11

List of Appendices

Appendix 1 Geotech VTEM specifications, CDI’s, plans and survey data (on DVD)
 TUC_CR109_VTEMTMI_TUCAR2008.zip
 TUC_CR109_VTEMTMIFINAL_TUCAR2008.zip
1. SUMMARY

The project area is approximately 100km SW of Darwin and consists of five tenements: EL24984, EL25176, EL25195 and EL25297. Three tenements underwent requirements for 2nd 50% reduction with a waiver from reduction applied for EL24984 and 50% reduction completed for EL25176 and EL25195.

The tenement group is located partly over the Litchfield province and partly over the western margin of the Pine Creek Orogen. Exploration potential exists for Uranium, base metals, mineral sands and tin.

Exploration focused on EL24984 during the period. Airborne electromagnetic survey VTEM was undertaken on EL24984 to explore for high sulphide style mineralised systems (Sally Malay or Voisey Bay Style) associated with ultramafic rocks intersected in TUC diamond drilling in late 2007. A test flight of 80 line kms was flown and results are undergoing detailed analysis.

Exploration on EL25176, EL25195 and El25297 included historical data compilation and a review of uranium targets (EL25176, 25195) and tin targets (EL25297).

Exploration next period will again be focused on EL24984 and based on the review of the VTEM test flight data. Dependant on the results an appropriate geophysical EM system is to be chosen to complete the EM flight. Helicopter and geochemical reconnaissance of radiometric anomalies and priority targets will be undertaken on EL24984, EL25176, EL25195, EL25297.

2. LOCATION AND ACCESS

The project area is approximately 100km SW of Darwin (Figure 1) and consists of five tenements: EL24984, EL25176, EL25195 and EL25297.

EL24984 is accessed via the sealed Litchfield Park road. The Labelle Station turnoff is 6km past Wangi Falls, and access to Labelle Station from Litchfield National Park is along the well-graded Channel Point Road. Labelle Station is in the NE corner of EL24984.

EL 25176 is accessed to the south of the Licence from Dorat Rd (old Stuart Highway, out of Adelaide River) then via the Daly River Road, then west and southwest along various tracks that truncate the Licence. Access is limited outside of the dry season.
EL25195 is accessed from Dorat Rd (old Stuart Highway, out of Adelaide River) then via the Daly River Road, then northwest along a road that links Litchfield Station to Welltree Station. This northwest road transects the eastern portion of the Licence. Station tracks veer off this road to access western portions of the tenement, including the river gauging station near the Daly River mouth.

EL25297 is situated approximately 55km SSE of Darwin, NT, and 40km W of Batchelor (Figure 1). The eastern boundary of the Licence runs parallel to the Litchfield National Park. Burton Creek runs through the centre of the tenement. The northern boundary is close to the Finniss River. Access would be via the Mandorah Road onto the Litchfield National Park road and then on to local tracks or exploration tracks.

Topography for most of the ground is low relief, with some floodplains and pastoral ground. Vegetation is sharply variable, with topographic highs covered in thick palms and undergrowth, and other open areas have pockets of eucalyptus woodland and melaleuca woodland. Much of the area is covered by Oryza tall closed tussock grasslands which overlie dark grey/black cracking clays.

3. TENEMENT STATUS AND OWNERSHIP

Tenement Status and Landowners are summarised in the table below:

<table>
<thead>
<tr>
<th>Tenement</th>
<th>Blocks</th>
<th>Grant Date</th>
<th>Year</th>
<th>Anniversary</th>
<th>Covenant</th>
<th>Cadastre</th>
<th>Owner</th>
<th>Station Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL 24984</td>
<td>289</td>
<td>21/07/2006</td>
<td>3</td>
<td>21/07/2008</td>
<td>$200,000.00</td>
<td>Pastoral</td>
<td>Peter Camm</td>
<td>Labelle Downs Station, Welltree Station</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Freehold Land</td>
<td>Australian Telecommunications Corporation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Perpetual Pastoral Lease</td>
<td>Branir Pty Ltd</td>
<td>Litchfield Station</td>
<td></td>
</tr>
<tr>
<td>EL 25176</td>
<td>362</td>
<td>9/11/2006</td>
<td>3</td>
<td>10/11/2008</td>
<td>$58,600.00</td>
<td>Perpetual Pastoral Lease</td>
<td>Branir Pty Ltd</td>
<td>Elizabeth Downs Station</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Freehold Land</td>
<td>Australian Telecommunications Corporation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Perpetual Pastoral Lease</td>
<td>Litchfield Station</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EL 25195</td>
<td>339</td>
<td>9/11/2006</td>
<td>3</td>
<td>10/11/2008</td>
<td>$128,100.00</td>
<td>Perpetual Pastoral Lease</td>
<td>Tovehead Pty Ltd</td>
<td>Litchfield Station</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Freehold Land</td>
<td>Peter Camm</td>
<td>Welltree Station</td>
</tr>
<tr>
<td>EL 25297</td>
<td>44</td>
<td>14/03/2007</td>
<td>2</td>
<td>14/03/2008</td>
<td>$28,300.00</td>
<td>Freehold Land</td>
<td>J.M Townsend</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Freehold Land</td>
<td>Lloyd Coleman Nominees Pty Ltd</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Freehold Land</td>
<td>M. Chesser</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Freehold Land</td>
<td>S.E. Wears</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Freehold Land</td>
<td>M. Daiyi</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Freehold Land</td>
<td>M.H. O’Connell</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Freehold Land</td>
<td>C.C. MacMillan</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Freehold Land</td>
<td>G.G. Parkinson</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Freehold Land</td>
<td>J.H. Holbrook</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Freehold Land</td>
<td>J.W. Jones</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Freehold Land</td>
<td>M.E. Leggo</td>
<td></td>
</tr>
</tbody>
</table>
During the year the following tenements required 50% reduction:

- EL24984 2nd year reduction: waiver from reduction applied for.
- EL25176 2nd year 50% reduction completed.
- EL25195 2nd year 50% reduction completed.

![Figure 1: CR111 Location Map](image-url)
4. GEOLOGY

The tenement group is located partly over the Litchfield province and partly over the western margin of the Pine Creek Orogen. Exploration potential exists for Uranium, base metals, mineral sands and tin.

The Litchfield Province was defined as the western part of the Pine Creek Geosyncline, with large parts of the Litchfield Province interpreted as ‘granitoid, garnetiferous, gneissic, with metasediments varying in metamorphic grade from greenschist to upper amphibolite / granulite grade (Berkman 1980). The lack of outcrop in much of the area has limited exploration on the western portions. Recent work by the NTGS has reviewed the Litchfield Province, with geochronology tentatively correlating the Litchfield Province with the Halls Creek Orogen to the southwest, but notes that the field evidence indicates a complex tectonic relationship (Carson et al., 2006; Glass, 2007).

EL 24984 is situated within the Litchfield Province. Most of the Licence has limited outcrop and swampy muds cover the underlying geology. Stratigraphic drilling on the western coast of EL24984 intersected Permian Kulshill Formation sediments that form part of the Bonaparte Basin, overlying Proterozoic Wagait Granite.

Along the northern boundary of EL24984, Wagait Granite crops out on low ridges and hills (Error! Reference source not found.). The Tom Turners fault transects the central portion of the Licence, with several fault splays hosting ferruginous quartz stockworks. The Tom Turners Fault is a significant structure; on the western side lies the Proterozoic Wagait Granite and Murrenja Dolerite, and the Proterozoic Moyle River Formation is on the eastern side of the Fault. The Wagait Granite is an I-type granite of the Kalkadoon Association (Wyborn 2002) with little fractionation and no association with significant mineralisation. The Murrenja Dolerite is in faulted contact with the Proterozoic Moyle River Formation quartzites along the northern boundary of EL24984, and Moyle River Formation sandstones form ‘Bobs Knob’ along the Tom Turners fault further south in the Licence. The eastern part of the Licence around Labelle Station is underlain by schists and gneisses of the Welltree Metamorphics. Cambrian sediments have been intersected in drilling by previous explorers in the SE of EL24984.
An ultramafic rock that may be associated with the Murrenja Dolerite has been intersected in drilling in the central portion of EL24984. Carson et al., (2006) reassessed the prospectivity of the Murrenja Dolerite based on examination of drillcore and geophysics within EL24984. NTGS assayed drillcore within EL24984 with results of 2000-3000ppm Cr, up to 1000ppm Ni, 13ppb Pd and 20ppb Pt. Carson et al., (2006) noted the moderate abundance of PGE’s may indicate an early S-saturation event did not occur, enhancing the prospectivity for PGE and Ni mineralisation within the Murrenja Dolerite. Geophysical interpretation by Carson (2006) indicated the Murrenja Dolerite may be extensive under colluvial sediments west of the Tom Turner’s fault.

There are no recorded MODAT occurrences within EL24984.

EL 25176 partially covers the Litchfield Province and the Pine Creek Orogen. The Giants Reef Fault transects the eastern edge of EL 25195, which is interpreted as the boundary between the two (Berkman 1980). The mapped lithology within the tenement is largely obscured by Cainozoic eluvial soils. Floodplain alluvium masks the geology of the northern blocks. The central portion has small outcrops of granites from the Allia Suite (Litchfield Granite, Fish River Billabong Adamellite) which is an S-type granite (Wyborn 2002). Further south, metabasite rocks of the Hermit Creek Metamorphics are mapped in areas adjacent to Murra-Kamangee Granodiorite. The eastern 5 blocks that are truncated by the Giants Reef Fault are mapped as Proterozoic Chilling Sandstone overlying Proterozoic Burrell Creek Formation sediments. Much of the tenement is underlain by the Allia Suite Granites (Litchfield and Murra-Kumangee Granodiorite) with areas of Hermit Creek Metamorphics sandwiched between the granites.

EL 25195 is also transacted by the Giants Reef Fault in the SE corner of the tenement. The lack of outcrop in much of the area has limited exploration on the western portions. It is possible that the Murrenja Dolerite that crops out along the Tom Turners Fault further north may occur under cover within EL 25195.

EL 25297 is situated within the Pine Creek Orogen. The tenement area covers the “Two Sisters Granite” predominantly. This is a palaeoproterozoic S-type granitoid which intrudes the Burrell Creek Formation and is unconformably overlain by Depot Creek Sandstone and Antrim Plateau Volcanics. The Two Sisters Granite is described as granite, adamellite, granodiorite and in places pegmatitic with accessory garnet and tourmaline. The NTGS believes the granite to be prospective for Pegmatite and Placer Tin deposits. Hickey (1990) state that the contact aureole with the Burrell Creek Formation is well known for its Pegmatite outcrops.
The Burrell Creek Formation is located on the eastern most side of the tenement. These metasediments are brown to grey-green, thickly bedded to massive, fine to coarse feldspathic metagreywacke with graded bedding in places and minor lenses of volcanolithic pebble conglomerate; brown to grey, laminated phyllite, slate and mudstone; minor quartz-mica schist; porphyroblastic quartz-mica hornfels near granite. The NTGS sees this unit as prospective for Vein Au, Vein Sn, Polymetallic Cu, Pb, Zn, Ag veins and vein-type U.

The regionally metamorphosed Welltree Metamorphics are predominant in the south of the tenement. These metasediments are described as Quartz-feldspar-biotite gneiss ± garnet ± sillimanite ± andalusite, quartzitic gneiss, quartzite, minor quartz-feldspar-muscovite gneiss.

The Sweets member of the Welltree Metamorphics is present in the southern portion of the tenement as a north-south trending unit. They are described as Marble in places graphitic, para-amphibolite, calc-silicate gneiss, quartz-feldspar-biotite gneiss. There are no recorded MODAT occurrences within the tenement although it is felt that the region is part of the “Bynoe Tin Tantalum mineral field." Tin mineral occurrences occur around the Licence.

Horn (2002) states that the tin/tantalite mineralisation is associated with the Meso to Neo Proterozoic pegmatite intrusions related to the Two Sisters granite. The pegmatites are variable but mostly form lenticular bodies that have intruded along foliations and bedding planes. They can occur as narrow veins or dykes up to 60 metres across and a kilometre in strike length. Sill like and blind complex intrusions are also noted by Horn (2002). Hickey (1990) describes the general strike of the veins and pegmatites as 045 degrees (grid) and outcropping sporadically throughout the licence. The pegmatites are marked by cream to green weathered feldspar and grey coarse mica. The contact between the granite and the metamorphosed pelites has been found to be covered by sediment but NTGS drilling has determined the contact to lie approximately along the course of the Burton Creek some two to three kilometres east and parallel to the Burrell Creek Formation Plateau marked by Mount Farrington, Mount Marie and the 146 feature (Hickey 1990). The northern portion of the licence is marked by a north east trending fault south of Porters Creek (Hickey 1990).

The pegmatites are described by Horn (2002) as:
1. showing fractional zoning during emplacement (can affect mineralisation distribution).
2. having wall rock enriched in mica and cores with kaolinite rich zones (weathered feldspars) +/- barren milky quartz.
3. having the best grades within the kaolinitic rich zones.
4. mineralisation can be fine to very coarse grained tantalite, cassiterite and columbite. There is no consistent distribution pattern of the minerals.

Alluvial and elluvial tin, tantalum, tungsten and gold were mined from the nearby Finniss River mineral field. Pickets, Annie, Lucy and numerous other mines and diggings of the Finniss River type deposits exist approximately 10 kilometres north east of the EL area.

5. PREVIOUS EXPLORATION

5.1 Exploration by Other Companies

Previous exploration from the 1960’s to the present has been reviewed and summarised in previous annual reports for these tenements. Exploration ranged from airborne geophysics to diamond drilling exploring for phosphate, mineral sands, bauxite, basemetal, diamonds, uranium and nickel. Of note was the drilling on EL24984 in 2003 which intersected ultramafic rocks within the Litchfield province and also RAB and aircore drilling for basemetal and mineral sands.

5.2 Exploration by Territory Uranium

EL24984
Work during Year 1 consisted of;

a) data compilation and review of previous data, with the aim of highlighting radiometric, geological and geochemical anomalies that require further work

b) sampling of De Beers drillcore to determine whether Ni and PGE data obtained by the NTGS occurred over a larger interval

c) sending thin-sections for SEM analysis

d) obtaining helimag survey data by Normandy for modelling of magnetic anomalies

e) geophysical data compilation (helimag data and regional data); data levelling of helimag data and 3D modelling using Potent software to highlight magnetic anomalies that are shallow and with a strong response

f) vehicle reconnaissance and rock chip sampling around the Tom Turners fault and outcropping Murrenja Dolerite on the northern boundary of EL24984
g) helicopter reconnaissance of magnetic anomalies to determine access, topography, vegetation and regolith – and to plan for further exploration.

EL25176

Work during Year 1 consisted of;

a) checking NTGS datasets, such as COREDAT, MODAT, Explorer 3
b) checking of some open file company reports submitted for previous tenure covering EL 25176.
c) georeferencing relevant maps and plans into MapInfo to obtain locations of samples and mapped geology within EL 25176.
d) Independent Geologist review.
e) Geophysical modelling of magnetic anomalies.

EL25195

Work during Year 1 consisted of;

a) checking NTGS datasets, such as COREDAT, MODAT, Explorer 3
b) checking of some open file company reports submitted for previous tenure covering EL 25176.
c) georeferencing relevant maps and plans into MapInfo to obtain locations of samples and mapped geology within EL 25176.
d) Independent Geologist review.
e) Review of Geophysical by geophysical consultant

EL25297

Work during Year 1 consisted of;

a) checking NTGS datasets, such as COREDAT, MODAT, Explorer 3
b) checking of some open file company reports submitted for previous tenure covering EL 25176.
c) georeferencing relevant maps and plans into MapInfo to obtain locations of samples and mapped geology within EL 25176.
d) Independent Geologist review.
6. EXPLORATION DURING YEAR 2

Exploration during the period primarily focused on EL24984. Exploration aimed to demonstrate the Litchfield Province has the potential to host Sally Malay style intrusions within the Hayes Creek Orogen.

EL24984

Diamond drilling, Ground Magnetometer traverses, and 3d geophysical modeling was completed in Year 2 of this tenement and was reported in the corresponding annual report (Annual Exploration Report EL 24984, 2007). This work falls outside of the reporting period for the combined technical report period and has not been included.

Airborne electromagnetic survey (Geotech VTEM) was undertaken to explore for high sulphide style mineralised systems (Sally Malay or Voisey Bay Style) associated with ultramafic rocks intersected in diamond drilling in late 2007.

A test flight of 80 line kms was flown to assess the technical risk associated with flying EM methods in coastal terrains where saltwater tables can interfere with the penetration of electrical currents. Another 800 line km’s were intended to be flown during the year but results from the test lines are still undergoing detailed analysis due to high conductivity near surface. Results are expected next reporting period. System specifications, CDI sections and data are supplied in Appendix 1. Figure 3 shows the lines flown and the original survey area.

EL25176, EL25195, EL25297

Exploration during the period was restricted with efforts focused on EL24984. Historical data compilation continued and a review of uranium targets (EL25176, 25195) and tin targets (EL25297) commenced with helicopter and geochemical reconnaissance planned at priority targets next field season.

Further geophysics is under consideration on EL25176 and EL25195 with airborne radiometrics over the uranium potential ground and follow-up EM where required.
7. PLANNED EXPLORATION FOR YEAR 3

Exploration next period will again be focused on EL24984 and based on the review of the VTEM test flight data. Dependant on the results an appropriate system is to be chosen to complete the EM flight. It is expected exploration would continue as below:

a) Helicopter-borne geophysical survey of approximately 840 line-kms over the EL24984 Litchfield area, for locating conductive anomalies and mapping earth resistivities. Along with this a high-sensitivity proton precession magnetometer will also be used to map geological structure and lithology.

b) Soil sampling using a dingo auger over magnetic anomalies detected by the EM geophysical system.

c) Diamond drilling of EM anomalies to test the basal contact of the ultramafic for Ni sulphides.

d) Helicopter and geochemical reconnaissance of radiometric anomalies on priority targets for EL24984, EL25176, EL25195, EL25297.
8. REFERENCES

Glass, L., 2007. Geochemistry of mafic rocks in the Litchfield Province, western Pine Creek Orogen: Evidence for a Paleoproterozoic arc-related setting and links to the Halls Creek Orogen.

Appendix 1
Geotech VTEM Survey Data

TUC_CR109_VTEMML_TUCAR2008.zip
TUC_CR109_VTEMMLFINAL_TUCAR2008.zip

Specifications, flight data and images produced by Geotech:

Files are under the following directories within TUC_CR109_VTEMML_TUCAR2008.zip:

- GEOSOFT MAPS.zip
- MAPINFO MAPS.zip
- NAVIGATION.zip
- PRELIM GDB.zip
- README.zip
- SYSTEM SPECS.zip
- VTEM_Envir_OIDs.zip

List of File Names below:

- A1T0_DPM.md
- A1T0_DPM.map
- A1T0_DPM.ncf
- A1T0_DPMCSD_RQD
- A1T0_EPLLOG_SF_TE_map
- A1T0_EPLLOG_SF_TE.msf
- A1T0_EPLLOG_SF_TE.mtf
- A1T0_EPLLOG_SF_TE.pmr
- A1T0_FF.md
- A1T0_FF.ncf
- A1T0_Mag2.qrd
- A1T0_Mag2.map
- A1T0_Mag2.ncf
- A1T0_Mag2_CRS2.5.qrd
- A1T0_UPK.dat
- A1T0_UPK.md
- A1T0_UPK.map
- A1T0_UPK_image.lab
- A1T0_UPK_image.md
- A1T0_UPK_image.mif
- A1T0_UPK_image.mst
- A1T0_UPK_image.pmr
- A1T0_FF.dat
- A1T0_FF.md
- A1T0_FF.map
- A1T0_FF.mif
- A1T0_Mag2.dat
- A1T0_Mag2.map
- A1T0_Mag2.lab
- A1T0_Mag2_image.lab
- A1T0_Mag2_image.mif
- A1T0_Mag2_image.pmr
- A1T0_LcField_Flightplan_Google.XML
- A1T0_Prealm.qbd
- A1T0_Readme.txt
- VTEM3_system_specs.dat
Final Data produced by Geotech, including Report and GDF data:
Files are under the following directories within TUC_CR109_VTEM_TUCAR2008.zip:

- FINAL
- GDF Database
- REPORT

File names listed below:

- A410_FlightPath.kmz
- A410_Litchfield_db8t_log(ch30-34).map
- A410_Litchfield_db8t_log.map
- A410_Litchfield_Final.dat
- A410_Litchfield_Final.dfn
- A410_Litchfield_Final.gdb
- A410_Litchfield_Final.H
- A410_Litchfield_Final.prj
- A410_Report_Litchfield.pdf
- A410_VTEM_Waveform.xb

Files produced by Lindeman Geophysics
CDI Sections.
LindemanGeophysics_CDIsections.zip:

List of File Names below: